
Lightweight Kernel Support for Direct Shared Memory
Access on a Multi-Core Processor

Ron Brightwell
Sandia National Laboratories

∗

PO Box 5800
Albuquerque, New Mexico
rbbrigh@sandia.gov

ABSTRACT
This paper describes an enhancement to the Catamount
lightweight kernel for direct shared memory access between
processes running on a multi-core processor as part of a par-
allel application. Unlike traditional shared memory support
for interprocess communication, which involves dynamic mem-
ory allocation and mapping, we leverage Catamount’s static
contiguous memory mapping scheme to allows the processes
on a multi-core process to directly access each other’s mem-
ory through simple virtual address manipulation. This pa-
per describes our implementation of direct shared memory
access in Catamount, contrasts it to other approaches, and
discusses the potential benefits of this approach in support-
ing MPI applications.

1. INTRODUCTION
The Catamount [6] lightweight kernel is a third-generation

compute node operating system that was initially developed
by Sandia National Laboratories and Cray, Inc., for the San-
dia/Cray Red Storm [4] massively parallel processing ma-
chine. Red Storm is the prototype for what has become
the commercially successful Cray XT line of large-scale, dis-
tributed memory parallel computing platforms. The cur-
rent Red Storm machine contains more than twelve thou-
sand dual-core AMD Opteron processors for a total of nearly
twenty-six thousand cores. A significant portion of the ma-
chine will soon be upgraded to quad-core processors, bring-
ing the peak performance up to 250 teraflops.

Catamount differs in many ways from traditional UNIX-
based operating systems. In particular, all Sandia lightweight
kernels were designed to support a limited set of hardware
running a relatively small set of applications using a message-
passing based programming model. These differences have

∗Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

allowed us to make design decisions and implementation
choices that would not be appropriate for general-purpose
operating systems. Since we are focused on optimizing per-
formance and scalability for MPI-based modeling and sim-
ulation applications for which a significant resource invest-
ment has been made, there is little opportunity to explore
alternative strategies that would involve significant changes
to the programming model or system architecture.

However, the onset of multi-core processors is impacting
many of the fundamental design choices that both appli-
cation programmers and system software developers have
made. Applications that have been running and scaling well
on tens of thousands of processors using an “MPI every-
where” model are now considering moving to mixed-mode
programming models where MPI is used for task-level par-
allelism between nodes, but Open MP compiler directives
or POSIX threads are used for finer-grain parallelism within
nodes. The main motivation for this consideration is not
the mulit-core processors themselves, but the inability of
memory subsystem performance and network performance
to keep pace with the increased computational capability.
However, experiences with mixed-mode programming ap-
proaches on symmetric multi-processors yielded little suc-
cess. Application developers added significant complexity
to their codes to avail of multi-level parallelism and few saw
any significant performance improvements.

MPI exacerbates the memory subsystem problem. The
MPI model mandates copying data between separate ad-
dress spaces. While this approach has some advantages in
terms of enforcing locality, memory-to-memory copies be-
tween processes on a multi-core processor puts even more
pressure on the memory subsystem. More importantly, the
most efficient way to implement intra-node MPI communi-
cations is to use POSIX shared memory, where a region of
shared memory is allocated and mapped into each process’
address space. For MPI, this means that the sender must
copy data into the shared region and the receiver must copy
it out. Instead of a single copy, there are two. Alternative
approaches have been proposed that allow the operating sys-
tem or an intelligent network interface to perform a single
copy, but all of the approaches have significant drawbacks.
See [3] for a comprehensive analysis of the tradeoffs for im-
plementing MPI intra-node communication operations.

In this paper, we describe an approach that leverages
Catamount’s existing memory management design to im-
plement fixed offset virtual addressing to allow for direct
shared memory access between the processes running on a
multi-core processor.

2. BACKGROUND
The Cougar lightweight kernel [9] from which Catamount

was derived had support for dual-processor compute nodes [7].
When the parallel application was launched, the user could
choose one of three different modes for using the two proces-
sors on each node. In message co-processor mode the system
processor was dedicated to servicing incoming network mes-
sages and handling requests from the user process running on
the second processor. This mode improved network latency
performance by avoiding the need for interrupts to service
the network DMA engine. In application co-processor mode,
the system processor ran the kernel as well as the main ap-
plication process. The application could run co-routines,
a limited threading environment, on the second processor.
Most applications did not use this capability directly, since
it was available through a non-portable interface. Rather, it
was enabled in the underlying computational libraries and
through Open MP compiler directives. The final mode, vir-
tual node mode, simply treated the two processors as two
separate nodes and ran a process on each processor. Cougar
had no support for shared memory, so the two processes
sharing a node communicated via message passing.

Virtual node mode was the most popular method of uti-
lizing dual-processor nodes because it did not require any
changes to existing MPI applications and delivered reason-
able application performance. No attempts were made to
extend Cougar to support more processors, since the ASCI
Red [10] platform on which it ran only supported two pro-
cessors per node. When Sandia and Cray began the devel-
opment of Catamount for Red Storm, it was not clear that
there would be a need for supporting multiple processors
per node. The original design for Red Storm called for four
single-processor nodes per board, and Cray had no plans to
connect these processors together to create a four-processor
nodes. Despite this, Sandia wanted to keep the processor
mode functionality from Cougar in Catamount because the
overhead of the extra code was minimal and removing the
code induced extra risk into a what had been a very stable,
production-hardened kernel. Nevertheless, Sandia removed
support for multi-processor nodes at the behest of Cray.

This lack of foresight become a significant limitation for
Catamount when AMD announced dual-core processors shortly
after the work to remove multi-processor support was com-
pleted. Sandia then began work to re-integrate virtual node
mode support back into Catamount for dual-core Red Storm
nodes. It was decided not to implement the other processor
modes since Red Storm had an intelligent network interface,
call the SeaStar [2], that eliminated the need for message co-
processor mode and few applications ever used application
co-processor mode. As with Cougar, Catamount only sup-
ported interprocess communication through message pass-
ing.

Rather than take full advantage of the programmability of
the SeaStar, Cray chose to implement message passing using
an interrupt-driven implementation of the Portals [1] data
movement layer. When a message arrives at the SeaStar,
it interrupts the host processor and lets the operating sys-
tem determine the ultimate destination in user space. The
OS then programs the SeaStar DMA engines appropriately.
For intra-node transfers less than 512 KB, the OS uses a
memory-to-memory copy to move messages between the pro-
cesses. For larger messages, the OS uses the network DMA
engines. This approach proved to be sufficient for dual-core

processors.
However, several significant problems arise when using

this approach for quad-core processors. Serialization of all
intra-node messages through the OS creates a bottleneck.
This problem is compounded by the interrupt-driven net-
work stack, resulting in a significant amount of work for one
of the cores, and creating a potential load imbalance across
the cores. Having multiple paths for intra-node messages –
one through shared memory and the other through network
DMA – induces added complexity to ensure proper ordering
of messages. These problems only get worse as core count
increases.

With the impending Red Storm upgrade to quad-core pro-
cessors, we decided to reevaluate the ability of Catamount to
support using shared memory for intra-node data movement
in a way that would allow for efficient MPI transfers.

3. DIRECT ACCESS SHARED MEMORY
Catamount does not support demand-paged virtual mem-

ory. It uses a linear mapping from virtual addresses to phys-
ical pages of memory. This approach can potentially have
several advantages. For instance, there is no need to reg-
ister memory or “lock” memory pages involved in network
transfers to prevent the operating system from unmapping
or re-mapping pages. The mapping is done at process cre-
ation time and is never changed. This can greatly simplify
translation and validation of virtual addresses for the net-
work interface. Virtual address validation is a simple bounds
check and translating virtual addresses to physical addresses
is a simple offset calculation. Sandia leveraged this capabil-
ity to implement a completely offloaded implementation of
Portals for the SeaStar [2].

Our approach for intra-node direct shared memory ac-
cess takes advantage of this simplified memory management
model, specifically the fact that Catamount only uses a sin-
gle entry in the top-level page table mapping structure (PML4)
on each Opteron core. Each PML4 slot covers 39 bits of ad-
dress space, or 512 GB of memory. Normally, Catamount
only uses the first entry, covering physical addresses in the
range 0x0 to 0x007FFFFFFFFF. The Opteron supports a 48-
bit address space, so there are 512 entries in the PML4.

To implement direct access shared memory, each core writes
the pointer to its PML4 table into an array at core 0 when
a new parallel job is started. Each time the kernel enters
the routine to run a context, it copies all of the PML4 en-
tries from each core into the other cores. This allows every
core on a node to see every other core’s view of the virtual
memory space across the node, at an easily computed offset
into its own virtual address space. The kernel-level code for
this is shown in Figure 1(a). Figure 1(b) shows the user-
level function that converts a “local” virtual address into a
“remote” virtual address on a different core.

Another aspect of Catamount memory management is
that the mapping of virtual addresses for the same exe-
cutable image is identical across all of the processes on all of
the nodes. The starting address of the data, stack, and heap
is the same. This means that the virtual address of vari-
ables with global scope is identical everywhere. The Cray
SHMEM get/put environment first available on the Cray T3
machine referred to such addresses as“symmetric”addresses,
whereas other addresses, such as those allocated off of the
stack as the application is running, are termed to be “non-
symmetric”. Symmetric addresses combined with the simple

s t a t i c void i n i t i a l i z e s h a r e d memo ry (void)
{

extern VA PML4T ENTRY ∗KN pml4 table cpu [] ;
in t cpu ;
f o r (cpu=0 ; cpu < MAX NUM CPUS ; cpu++) {

VA PML4T ENTRY ∗ pml4 = KN pml4 table cpu [cpu] ;
i f (! pml4)

cont inue ;
KERNEL PCB TYPE ∗ kpcb = (KERNEL PCB TYPE∗) KN cur kpcb ptr [cpu] ;
i f (! kpcb) cont inue ;
VA PML4T ENTRY d i r b a s e p t r = (VA PML4T ENTRY)

(KVTOP((s i z e t) kpcb−>kpcb di rba se) | PDE P | PDE W | PDE U) ;
i n t other ;
f o r (other=0 ; other<MAX NUM CPUS ; other++) {

VA PML4T ENTRY ∗ other pml4 = KN pml4 table cpu [other] ;
i f (! other pml4) cont inue ;
other pml4 [cpu+1] = d i r b a s e p t r ;

}
}

}

(a) Kernel code

s t a t i c i n l i n e void ∗ r emote addres s (unsigned core ,
v o l a t i l e void ∗ vaddr)

{
u i n t p t r t addr = (u i n t p t r t) vaddr ;
addr |= ((u i n t p t r t) (core +1)) << 39;
return (void ∗) addr ;

}

(b) User code

1: Code to enable direct access shared memory (a), and to convert a local address to a remote address (b).

remote address translation function make it extremely easy
for one process to read or write the corresponding data in
another process’ address space running on a different core
of the same processor.

Replicating the top-level page table entry across all cores
seems like a straightforward approach to allowing efficient
data sharing between processes running on a multi-core pro-
cessor as part of a parallel application. There has been
much research in operating system support for shared mem-
ory. Our approach is similar to approaches that have been
taken for single-address space operating systems. However,
we have been unable to find any prior work where such di-
rect access shared memory between all processes was desired
or achieved.

4. POTENTIAL BENEFITS
Our direct access shared memory approach has several

advantages over the existing approach for intra-node data
movement in Catamount and also overcomes several limita-
tions of using POSIX shared memory regions.

For MPI point-to-point communications, our approach al-
lows for single-copy MPI transfers without the overhead of
kernel involvement. Catamount’s static page tables elim-
inate the need to remap pages on the fly. User-level ac-
cess avoids any serialization through the kernel. In addition
to the extra copies imposed by POSIX shared memory, an
MPI implementation must deal with managing a fixed-sized
shared region. This could become a more severe problem if
core counts continue to increase faster than the amount of
memory per node.

Our approach also supports functionality that none of the
existing approaches for intra-node data movement do. MPI
collective reduction operations can be performed directly in
place at the destination buffer. Rather than having each
process copy their operands into shared memory, perform
the operation, and then copy the result out, direct access
shared memory allows for having a process directly perform
the operation on the corresponding process’ buffer. One-
sided operations, such as the MPI-2 remote memory access
operations and Cray SHMEM get/put operations are also
easily supported.

Direct access shared memory seems to be a natural fit
for implementing a Partitioned Global Address Model, such
as Unified Parallel C [5] or Co-Array Fortran [8]. These
languages and libraries provide a partitioned address space
that has “close” private memory and “far” shared memory.
Because our approach can use loads and stores directly on

a node, it may be possible to provide efficient compiler or
library support within these environments.

5. SUMMARY
This paper has described a method of using page tables

and virtual addressing to provide direct access shared mem-
ory between the processes running on a multi-core processor.
This approach has many significant advantages over other
methods of providing intra-node data movement. In partic-
ular, it can be used to implement MPI in a way that avoids
any extraneous memory-to-memory copies – which will be-
come extremely important as core counts increase. It can
also be used to implement functionality that POSIX-style
shared memory cannot – such as one-sided data get/put op-
erations and in-place reduction operations.

Our implementation of direct access shared memory also
emphasizes the simplicity of a lightweight kernel environ-
ment. The kernel code to enable direct access shared mem-
ory is approximately 32 lines. A similar strategy could be
implemented in a more full-featured operating system like
Linux, but would likely involve significant changes to the
internal memory management code and structures.

Direct access shared memory support has been integrated
into CNW version 2.0.41 and has been tested on more than
three thousand nodes of the Red Storm machine. We are
currently making the necessary changes to MPI to make
use of this new capability and expect to have performance
results shortly.

6. ACKNOWLEDGMENTS
The implementation of direct access shared memory in

Catamount would not have been possible without Trammell
Hudson and John Van Dyke. Kevin Pedretti and Kurt Fer-
reira also provided many useful discussions regarding virtual
memory and lightweight kernel memory management. The
author also gratefully acknowledges the support of Sue Kelly
and the Cray support staff at Sandia.

7. REFERENCES
[1] R. Brightwell, W. Lawry, A. B. Maccabe, and

R. Riesen. Portals 3.0: Protocol building blocks for
low overhead communication. In Proceedings of the
2002 Workshop on Communication Architecture for
Clusters, April 2002.

[2] Ron Brightwell, Trammell Hudson, Kevin T. Pedretti,
and Keith D. Underwood. SeaStar interconnect:

Balanced bandwidth for scalable performance. IEEE
Micro, 26(3), May/June 2006.

[3] Darius Buntinas, Guillaume Mercier, and William
Gropp. Data transfers between processes in an smp
system: Performance study and application to mpi. In
Proceedings of the 2006 International Conference on
Parallel Processing, August 2006.

[4] William J. Camp and James L. Tomkins. Thor’s
hammer: The first version of the Red Storm MPP
architecture. In In Proceedings of the SC 2002
Conference on High Performance Networking and
Computing, Baltimore, MD, November 2002.

[5] Willaim W. Carlson, Jesse M. Draper, David E.
Culler, Kathy Yelick, Eugene Brooks, and Karen
Warren. Introduction to UPC and language
specification. Technical Report CCS-TR-99-157, May
1999.

[6] Suzanne M. Kelly and Ron Brightwell. Software
architecture of the light weight kernel, Catamount. In
Proceedings of the 2005 Cray User Group Annual
Technical Conference, May 2005.

[7] Arthur B. Maccabe, Rolf Riesen, and David W. van
Dresser. Dynamic processor modes in Puma. Bulletin
of the Technical Committee on Operating Systems and
Application Environments (TCOS), 8(2):4–12, 1996.

[8] Robert W. Numrich and John Reid. Co-array Fortran
for parallel programming. SIGPLAN Fortran Forum,
17(2):1–31, 1998.

[9] Lance Shuler, Chu Jong, Rolf Riesen, David van
Dresser, Arthur B. Maccabe, Lee Ann Fisk, and
T. Mack Stallcup. The Puma operating system for
massively parallel computers. In Proceeding of the
1995 Intel Supercomputer User’s Group Conference.
Intel Supercomputer User’s Group, 1995.

[10] Stephen R. Wheat Timothy G. Mattson, David Scott.
A TeraFLOPS Supercomputer in 1996: The ASCI
TFLOP System. In Proceedings of the 1996
International Parallel Processing Symposium, 1996.

